
Computer Organization and Architecture: A Pedagogical Aspect

Prof. Jatindra Kr. Deka

Dr. Santosh Biswas

Dr. Arnab Sarkar

Department of Computer Science & Engineering

Indian Institute of Technology, Guwahati

Lecture – 26

Direct-mapped Caches: Misses, Writes and Performance

(Refer Slide Time: 00:28)

Unit 1 part 2: We ended part 1 of unit 1 by saying that we have different memory

technologies which vary in terms of their access times and cost per GB. For example, we said

that SRAMs are very fast and its speed is about one 0.5 to 2.5 nanoseconds, its access time;

that means, it is on an average about one-tenth as fast as the processor ok. However, the cost

per GB of this type of memories is also very huge. The cost per GB is about 2000 dollars to

5000 dollars.

Then we have DRAMs which are about 150 to 100 times slower than SRAMs; that means, to

bring a certain amount of data a data unit a word from DRAM the processor will require

about hundreds of processor cycles to do so. The speed of a DRAM is typically in the range

of 50 to 70 nanoseconds; that is the access time is in the range of 50 to 70 nanoseconds. But,

it is also about hundred times cheaper than SRAMs. So, the typical cost of DRAM units

range in between 20 dollars to 75 dollars per GB.

819

Magnetic disks or hard disks are far cheaper; about 1000 times cheaper than DRAMs being

only about 0.2 to 2 dollars per GB. However, it is also about 1000 times 100 times, 100 to

1000 times slower than DRAM units. Its access times ranges in between 5 to 20 milliseconds.

So, to bring a data word from the hard disk, the processor requires tens of thousands of

processor cycles.

(Refer Slide Time: 02:26)

So, to achieve the best performance what would we desire? We would desire a very large

capacity memory which can hold all our programs and data and which works at the pace of

the processor. That means, if a processor requires a memory word in one cycle it is available

in the processor from memory in the next cycle itself. However, in practice we saw the cost

and performance parameters and it is difficult to achieve. So, to achieve the greatest

performance memory should be able to keep pace with the processor. It is not desirable to

wait for instruction slash operands when the processor executes instructions. And hence we

would like to use the fastest available memory technology. We also need a large capacity

memory to hold all our required information.

However, the cost of memory must be reasonable with respect to other components. Hence

we understand that we have a design trade off. So, although the faster memories the mem

although SRAMs are very fast in terms of access time, they are also very costly. The solution

is to have memory hierarchy where smaller more expensive and faster memories are

supplemented by larger, cheaper and slower memories.

820

(Refer Slide Time: 04:18)

Therefore, we have registers in the processor we typically have a few dozens of these

registers and registers operate at the same speed as that of the processor. However, they are

very expensive and we cannot have a large number of registers in the processor. Next in the

hierarchy is cache. As I told it is about one tenth as fast as the processor speed; however, it is

also very costly. Then we have the main memory which is slower than cache memory about

hundreds of times slower than the processor speed and; however, its cost is cheaper than that

of the cache. We have magnetic disks which are much cheaper than the main memory.

However, its access times are also much slower and so on.

So, as we go down the hierarchy we have decreasing cost per GB, increasing capacity

because it is cheaper we can have more capacity, more amount of that memory. We, but we

also have increasing access times as we go down the hierarchy memories become slower.

And we have decreasing frequency of access based on and this phenomenon that we have that

we are able to have decreasing frequency of access towards in memories which are down the

hierarchy is based on the principle of the locality of reference.

821

(Refer Slide Time: 06:00)

Principle of the locality of reference is based on the fact that programs tend to access data and

instructions and data in clusters, in the vicinity in the near vicinity at a of a given memory

location. So, programs access a small portion of memory at a given time. Why? Because

programs typically contain a large number of loops and subroutines, and within a loop or a

subroutine a small set of instructions are repeatedly accessed. These instructions again tend to

access data in clusters. So, there are two distinct principles in the locality of reference.

Temporal locality which says that items accessed recently are likely to be accessed again. For

example, the instructions within a loop.

So, if the instructions within in one iteration of the loop will be again accessed in the next

iteration of the loop. And special locality in items near those accessed recently are likely to

be accessed soon; for example, sequential access of data from an array. So, if you have a big

array we tend to access data one by one from the array in sequence. So, how does this

principle of the locality of reference helps to maintain this hierarchical memory organization?

822

(Refer Slide Time: 07:17)

So, principle of locality makes hierarchical organization of memory possible. So, how can we

do that? For example, we can store everything we store everything in the magnetic disk. And

then we copy recently accessed and nearby data in a small DRAM memory or the main

memory. So, the main memory uses this technology of DRAM from the disk.

So, we have the magnetic disk which stores everything and whatever we require currently we

access, we access it and store it in a DRAM or the main memory. Then whatever is still more

recently accessed data and instructions are stored in an SRAM memory which is cache from

the DRAM.

823

(Refer Slide Time: 08:20)

Cache memory: So now we begin our discussion on cache memory. So, cache memory as we

said is based on the SRAM memory technology. It’s a small amount of fast memory which

sits between the main memory and the CPU and it may be located within the CPU chip or a

separate modules which are plugged in on the motherboard. So, when the processor attempts

to read a memory word from the main memory, it what does it do? It places the address of the

memory word from where on the address bus. Then what is done? A check is made to

determine if the word is in cache. If the word is in cache we have a cache hit otherwise we

suffered a cache miss. What is the hit time? The time to access a memory word in memory

word in case of a hit is the hit time. So, fraction of memory accesses resulting in hits is called

the hit ratio or the hit rate and is defined as number of cache hits over a certain given number

of accesses on the memory.

Miss ratio or miss rate is; obviously, 1 minus the hit ratio. In case of a cache miss a block of

memory consisting of a fixed number of words is read into the cache and then the word is

delivered to the processor. A block of memory is fetched instead of only the requested

memory word to take advantage of the locality of reference. Future references may access

other words in the block ok. A block of data is fetched instead of only the requested memory

word to take advantage of the locality of references because future references may access

other words in the block. And in that case when those future references are made we will

have a cache hit. Miss penalty: the time to replace a cache block and deliver requested word

to the processor is known as miss penalty.

824

(Refer Slide Time: 09:50)

So, here in the figure on the left we see that CPU asks for a word from memory and if that

word is present in cache, we send it back to the CPU and this is word transfer. If this word is

not present in cache we have a cache miss and then we fetch a block from main memory and

this block contains the desired word also. So, between cache and main memory we have

block transfer whereas, between CPU and cache we have word transfer. The figure on the

right shows that we may have different levels of cache not only a single level of cache.

So, we have CPU followed by followed by a small a small very fast cache, followed by a

level 2 cache which is slower than level one cache, but is also higher in capacity. We also

may have level 3 cache which is higher in capacity than level 2 cache, but is also slower and

then finally, we have the main memory.

825

(Refer Slide Time: 12:00)

Let us assume that we have an n bit address bus. Therefore, we have a main memory

consisting of 2𝑛 addressable words. For the purpose of mapping the main memory is

considered to consist of 𝑀 = 2𝑛/𝐾 fixed length blocks of 𝐾 words each. So, we have a main

memory which consists of 2𝑛 words or bytes and a block consisting of K words or bytes

each. And each so the number of blocks we have in main memory is given by 2𝑛/𝐾. The

cache contains m blocks called lines. Each line contains 𝐾 words same as the same as the

block size plus a few tag bits and a valid bit.

The length of a line not including the tag and valid bit is the line size. The number of lines in

cache is much much less than the main memory block size; that is small 𝑚 is much much less

than 𝑀. The tag identifies which particular main memory block is currently in a line; so

therefore, right. The valid bit indicates whether the line has been modified since being loaded

in cache.

826

(Refer Slide Time: 13:38)

Since, 𝑚 is much much less than 𝑀; that is the number of lines in cache is much much less

than the number of blocks in the main memory we need a mechanism for mapping main

memory blocks to cache lines. Therefore, we have a mapping function. The simplest mapping

function is called direct mapping. In this each main memory block may be mapped to a single

unique cache line and the mapping function is given by 𝑖 = 𝑗 𝑚𝑜𝑑𝑢𝑙𝑜 𝑚; where 𝑖 is the cache

line number, 𝑗 is the main memory block number and m is the number of cache lines.

So, in this example that we the figure that we have at the bottom the cache has 8 lines and the

main memory has 16 blocks. And we see that blocks 0 and block number 16, block number 0

and blocks number 16 maps both map to cache line number 0. Similarly, block number 15 as

well as block number similarly block number 7 and block number 15 both map to line

number 7.

827

(Refer Slide Time: 15:03)

For the purposes of cache access, when we want to read the cache, each main memory

address may be viewed as consisting of 𝑠 + 𝑤 bits ok. So, we have a main memory consisting

of 𝑠 + 𝑤 bits. So, here this is 𝑠 and this is 𝑤. Each main memory address may be viewed as

consisting of 𝑠 + 𝑤 bits. In which the w LSBs, the least significant bits identify a unique

word within or byte within a main memory block. The block size is equal to the line size and

is 2𝑤 bytes ok. Because there are 𝑤 LSBs, we have 2𝑤 addressable bytes within a block or

line. The 𝑠 MSBs equals to is the block id, the most significant 𝑠 bits are the block id. So, it

identifies one of 2𝑠 main memory blocks. Given the size of cache equals to 𝑚 = 2𝑟. So, we

have let the number of lines in cache equals to 𝑚 and this 𝑚 it is equals to 2𝑟; r determines

the, determines a line number or the cache index number ok.

So, 𝑟 bits are used to determine the line number or cache index number. So, 𝑠 − 𝑟 bits or the

MSBs 𝑠 − 𝑟 MSBs of the main memory address gives the size of the tag field. And thus the

main memory address has 3 parts; the tag field which is the 𝑠 − 𝑟 MSBs, the next 𝑟 bits

identify a line in cache and the least significant w bits identify a word in the main memory.

828

