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Unit 1 part 2: We ended part 1 of unit 1 by saying that we have different memory 

technologies which vary in terms of their access times and cost per GB. For example, we said 

that SRAMs are very fast and its speed is about one 0.5 to 2.5 nanoseconds, its access time; 

that means, it is on an average about one-tenth as fast as the processor ok. However, the cost 

per GB of this type of memories is also very huge. The cost per GB is about 2000 dollars to 

5000 dollars. 

Then we have DRAMs which are about 150 to 100 times slower than SRAMs; that means, to 

bring a certain amount of data a data unit a word from DRAM the processor will require 

about hundreds of processor cycles to do so. The speed of a DRAM is typically in the range 

of 50 to 70 nanoseconds; that is the access time is in the range of 50 to 70 nanoseconds. But, 

it is also about hundred times cheaper than SRAMs. So, the typical cost of DRAM units 

range in between 20 dollars to 75 dollars per GB. 
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Magnetic disks or hard disks are far cheaper; about 1000 times cheaper than DRAMs being 

only about 0.2 to 2 dollars per GB. However, it is also about 1000 times 100 times, 100 to 

1000 times slower than DRAM units. Its access times ranges in between 5 to 20 milliseconds. 

So, to bring a data word from the hard disk, the processor requires tens of thousands of 

processor cycles. 
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So, to achieve the best performance what would we desire? We would desire a very large 

capacity memory which can hold all our programs and data and which works at the pace of 

the processor. That means, if a processor requires a memory word in one cycle it is available 

in the processor from memory in the next cycle itself. However, in practice we saw the cost 

and performance parameters and it is difficult to achieve. So, to achieve the greatest 

performance memory should be able to keep pace with the processor. It is not desirable to 

wait for instruction slash operands when the processor executes instructions. And hence we 

would like to use the fastest available memory technology. We also need a large capacity 

memory to hold all our required information. 

However, the cost of memory must be reasonable with respect to other components. Hence 

we understand that we have a design trade off. So, although the faster memories the mem 

although SRAMs are very fast in terms of access time, they are also very costly. The solution 

is to have memory hierarchy where smaller more expensive and faster memories are 

supplemented by larger, cheaper and slower memories. 
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Therefore, we have registers in the processor we typically have a few dozens of these 

registers and registers operate at the same speed as that of the processor. However, they are 

very expensive and we cannot have a large number of registers in the processor. Next in the 

hierarchy is cache. As I told it is about one tenth as fast as the processor speed; however, it is 

also very costly. Then we have the main memory which is slower than cache memory about 

hundreds of times slower than the processor speed and; however, its cost is cheaper than that 

of the cache. We have magnetic disks which are much cheaper than the main memory. 

However, its access times are also much slower and so on. 

So, as we go down the hierarchy we have decreasing cost per GB, increasing capacity 

because it is cheaper we can have more capacity, more amount of that memory. We, but we 

also have increasing access times as we go down the hierarchy memories become slower. 

And we have decreasing frequency of access based on and this phenomenon that we have that 

we are able to have decreasing frequency of access towards in memories which are down the 

hierarchy is based on the principle of the locality of reference. 
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Principle of the locality of reference is based on the fact that programs tend to access data and 

instructions and data in clusters, in the vicinity in the near vicinity at a of a given memory 

location. So, programs access a small portion of memory at a given time. Why? Because 

programs typically contain a large number of loops and subroutines, and within a loop or a 

subroutine a small set of instructions are repeatedly accessed. These instructions again tend to 

access data in clusters. So, there are two distinct principles in the locality of reference. 

Temporal locality which says that items accessed recently are likely to be accessed again. For 

example, the instructions within a loop. 

So, if the instructions within in one iteration of the loop will be again accessed in the next 

iteration of the loop. And special locality in items near those accessed recently are likely to 

be accessed soon; for example, sequential access of data from an array. So, if you have a big 

array we tend to access data one by one from the array in sequence. So, how does this 

principle of the locality of reference helps to maintain this hierarchical memory organization? 
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So, principle of locality makes hierarchical organization of memory possible. So, how can we 

do that? For example, we can store everything we store everything in the magnetic disk. And 

then we copy recently accessed and nearby data in a small DRAM memory or the main 

memory. So, the main memory uses this technology of DRAM from the disk. 

So, we have the magnetic disk which stores everything and whatever we require currently we 

access, we access it and store it in a DRAM or the main memory. Then whatever is still more 

recently accessed data and instructions are stored in an SRAM memory which is cache from 

the DRAM. 
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Cache memory: So now we begin our discussion on cache memory. So, cache memory as we 

said is based on the SRAM memory technology. It’s a small amount of fast memory which 

sits between the main memory and the CPU and it may be located within the CPU chip or a 

separate modules which are plugged in on the motherboard. So, when the processor attempts 

to read a memory word from the main memory, it what does it do? It places the address of the 

memory word from where on the address bus. Then what is done? A check is made to 

determine if the word is in cache. If the word is in cache we have a cache hit otherwise we 

suffered a cache miss. What is the hit time? The time to access a memory word in memory 

word in case of a hit is the hit time. So, fraction of memory accesses resulting in hits is called 

the hit ratio or the hit rate and is defined as number of cache hits over a certain given number 

of accesses on the memory. 

Miss ratio or miss rate is; obviously, 1 minus the hit ratio. In case of a cache miss a block of 

memory consisting of a fixed number of words is read into the cache and then the word is 

delivered to the processor. A block of memory is fetched instead of only the requested 

memory word to take advantage of the locality of reference. Future references may access 

other words in the block ok. A block of data is fetched instead of only the requested memory 

word to take advantage of the locality of references because future references may access 

other words in the block. And in that case when those future references are made we will 

have a cache hit. Miss penalty: the time to replace a cache block and deliver requested word 

to the processor is known as miss penalty. 
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So, here in the figure on the left we see that CPU asks for a word from memory and if that 

word is present in cache, we send it back to the CPU and this is word transfer. If this word is 

not present in cache we have a cache miss and then we fetch a block from main memory and 

this block contains the desired word also. So, between cache and main memory we have 

block transfer whereas, between CPU and cache we have word transfer. The figure on the 

right shows that we may have different levels of cache not only a single level of cache. 

So, we have CPU followed by followed by a small a small very fast cache, followed by a 

level 2 cache which is slower than level one cache, but is also higher in capacity. We also 

may have level 3 cache which is higher in capacity than level 2 cache, but is also slower and 

then finally, we have the main memory. 
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Let us assume that we have an n bit address bus. Therefore, we have a main memory 

consisting of 2𝑛 addressable words. For the purpose of mapping the main memory is 

considered to consist of 𝑀 = 2𝑛/𝐾 fixed length blocks of 𝐾 words each. So, we have a main 

memory which consists of 2𝑛 words or bytes and a block consisting of K words or bytes 

each. And each so the number of blocks we have in main memory is given by 2𝑛/𝐾. The 

cache contains m blocks called lines. Each line contains 𝐾 words same as the same as the 

block size plus a few tag bits and a valid bit. 

The length of a line not including the tag and valid bit is the line size. The number of lines in 

cache is much much less than the main memory block size; that is small 𝑚 is much much less 

than 𝑀. The tag identifies which particular main memory block is currently in a line; so 

therefore, right. The valid bit indicates whether the line has been modified since being loaded 

in cache. 
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Since, 𝑚 is much much less than 𝑀; that is the number of lines in cache is much much less 

than the number of blocks in the main memory we need a mechanism for mapping main 

memory blocks to cache lines. Therefore, we have a mapping function. The simplest mapping 

function is called direct mapping. In this each main memory block may be mapped to a single 

unique cache line and the mapping function is given by 𝑖 = 𝑗 𝑚𝑜𝑑𝑢𝑙𝑜 𝑚; where 𝑖 is the cache 

line number, 𝑗 is the main memory block number and m is the number of cache lines. 

So, in this example that we the figure that we have at the bottom the cache has 8 lines and the 

main memory has 16 blocks. And we see that blocks 0 and block number 16, block number 0 

and blocks number 16 maps both map to cache line number 0. Similarly, block number 15 as 

well as block number similarly block number 7 and block number 15 both map to line 

number 7. 
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For the purposes of cache access, when we want to read the cache, each main memory 

address may be viewed as consisting of 𝑠 + 𝑤 bits ok. So, we have a main memory consisting 

of 𝑠 + 𝑤 bits. So, here this is 𝑠 and this is 𝑤. Each main memory address may be viewed as 

consisting of 𝑠 + 𝑤 bits. In which the w LSBs, the least significant bits identify a unique 

word within or byte within a main memory block. The block size is equal to the line size and 

is 2𝑤 bytes ok. Because there are 𝑤 LSBs, we have 2𝑤 addressable bytes within a block or 

line. The 𝑠 MSBs equals to is the block id, the most significant 𝑠 bits are the block id. So, it 

identifies one of 2𝑠 main memory blocks. Given the size of cache equals to 𝑚 = 2𝑟. So, we 

have let the number of lines in cache equals to 𝑚 and this 𝑚 it is equals to 2𝑟; r determines 

the, determines a line number or the cache index number ok. 

So, 𝑟 bits are used to determine the line number or cache index number. So, 𝑠 − 𝑟 bits or the 

MSBs 𝑠 − 𝑟 MSBs of the main memory address gives the size of the tag field. And thus the 

main memory address has 3 parts; the tag field which is the 𝑠 − 𝑟 MSBs, the next 𝑟 bits 

identify a line in cache and the least significant w bits identify a word in the main memory. 

828


